1/17/2023

Super Audio CD

Super Audio CD (SACD) is an optical disc format for audio storage introduced in 1999. It was developed jointly by Sony and Philips Electronics and intended to be the successor to the Compact Disc (CD) format. It is sometimes referred to DVD audio.

The SACD format allows multiple audio channels (i.e. surround sound or multichannel sound). It also provides a higher bit rate and longer playing time than a conventional CD.

An SACD is designed to be played on an SACD player. A hybrid SACD contains a Compact Disc Digital Audio (CDDA) layer and can also be played on a standard CD player.



History

The Super Audio CD format was introduced in 1999,[1] and is defined by the Scarlet Book standard document. Philips and Crest Digital partnered in May 2002 to develop and install the first SACD hybrid disc production line in the United States, with a production capacity of up to three million discs per year.[2] SACD did not achieve the level of growth that compact discs enjoyed in the 1980s,[3] and was not accepted by the mainstream market.[4][5][6]

By 2007, SACD had failed to make a significant impact in the marketplace; consumers were increasingly downloading low-resolution music files over the internet rather than buying music on physical disc formats.[1] A small and niche market for SACD has remained, serving the audiophile community.[7]

Content

By October 2009, record companies had published more than 6,000 SACD releases, slightly more than half of which were classical music. Jazz and popular music albums, mainly remastered previous releases, were the next two genres most represented.[citation needed]

Many popular artists have released some or all of their back catalog on SACD. Pink Floyd's album The Dark Side of the Moon (1973) sold over 800,000 copies by June 2004 in its SACD Surround Sound edition.[8] The Who's rock opera Tommy (1969), and Roxy Music's Avalon (1982), were released on SACD to take advantage of the format's multi-channel capability. All three albums were remixed in 5.1 surround, and released as hybrid SACDs with a stereo mix on the standard CD layer.

Some popular artists have released new recordings on SACD. Sales figures for Sting's Sacred Love (2003) album reached number one on SACD sales charts in four European countries in June 2004.[8]

Between 2007 and 2008, the rock band Genesis re-released all of their studio albums across three SACD box sets. Each album in these sets contains both new stereo and 5.1 mixes. The original stereo mixes were not included. The US & Canada versions do not use SACD but CD instead.

By August 2009 443 labels[9] had released one or more SACDs. Instead of depending on major label support, some orchestras and artists have released SACDs on their own. For instance, the Chicago Symphony Orchestra started the Chicago Resound label to provide full and burgeoning support for high-resolution SACD hybrid discs, and the London Symphony Orchestra established their own LSO Live label.[citation needed]

Many SACD discs that were released from 2000-2005 are now out of print and available only on the used market.[7][10] By 2009, the major record companies were no longer regularly releasing discs in the format, with new releases confined to the smaller labels.[11]

Technology

SA-CD characteristics
Characteristic CD layer (optional) SACD layer
Disc capacity 700 MB[12] 4.7 GB[13]
Audio encoding 16-bit pulse-code modulation 1-bit Direct Stream Digital
Sampling frequency 44.1 kHz 2,822.4 kHz (2.8224 MHz)
Audio channels 2 (stereo) Up to 6 (discrete surround)
Playback time if stereo 80 minutes[14] 110 minutes without DST compression[13]

SACD discs have identical physical dimensions as standard compact discs. The areal density of the disc is the same as a DVD. There are three types of disc:[13]

  • Hybrid: Hybrid SACDs have a 4.7 GB SACD layer (the HD layer), as well as a CD (Red Book) audio layer readable by most conventional Compact Disc players.[15]
  • Single-layer: A disc with one 4.7 GB SACD layer.
  • Dual-layer: A disc with two SACD layers, totaling 8.5 GB, and no CD layer. Dual-layer SACDs can store nearly twice as much data as a single-layer SACD. Like most dual-layer DVDs, the data spiral for the first layer is encoded from the inside out, and the second layer is encoded starting from the point where the first layer ends and ending at the innermost part of the disc.[citation needed] Unlike hybrid discs, both single- and dual-layer SACDs are incompatible with conventional CD players and cannot be played on them.

A stereo SACD recording has an uncompressed rate of 5.6 Mbit/s, four times the rate for Red Book CD stereo audio.[13]

Commercial releases commonly include both surround sound (five full-range plus LFE multi-channel) and stereo (dual-channel) mixes on the SACD layer.[citation needed] Some reissues retain the mixes of earlier multi-channel formats (examples include the 1973 quadraphonic mix of Mike Oldfield's Tubular Bells and the 1957 three-channel stereo recording by the Chicago Symphony Orchestra of Mussorgsky's Pictures at an Exhibition, reissued on SACD in 2001 and 2004 respectively).

Disc reading

A Super Audio CD uses two layers and the standardized focal length of conventional CD players to enable both types of player to read the data

Objective lenses in conventional CD players have a longer working distance, or focal length, than lenses designed for SACD players. In SACD-capable DVD, Blu-ray and Ultra HD Blu-ray players, the red DVD laser is used for reading SACDs.[citation needed] This means that when a hybrid SACD is placed into a conventional CD player, the infrared laser beam passes through the SACD layer and is reflected by the CD layer at the standard 1.2 mm distance, and the SACD layer is out of focus. When the same disc is placed into an SACD player, the red laser is reflected by the SACD layer (at 0.6 mm distance) before it can reach the CD layer. Conversely, if a conventional CD is placed into an SACD player, the laser will read the disc as a CD since there is no SACD layer.[13][16]

Direct Stream Digital

SACD audio is stored in Direct Stream Digital (DSD) format using pulse-density modulation (PDM) where audio amplitude is determined by the varying proportion of 1s and 0s. This contrasts with compact disc and conventional computer audio systems using pulse-code modulation (PCM) where audio amplitude is determined by numbers encoded in the bit stream. Both modulations require neighboring samples to reconstruct the original waveform, the more the lower frequency that can be encoded.

DSD is 1-bit, has a sampling rate of 2.8224 MHz, and makes use of noise shaping quantization techniques in order to push 1-bit quantization noise up to inaudible ultrasonic frequencies. This gives the format a greater dynamic range and wider frequency response than the CD. The SACD format is capable of delivering a dynamic range of 120 dB from 20 Hz to 20 kHz and an extended frequency response up to 100 kHz, although most available players list an upper limit of 70–90 kHz,[17] and practical limits reduce this to 50 kHz.[13] Because of the nature of sigma-delta converters, DSD and PCM cannot be directly compared. DSD's frequency response can be as high as 100 kHz, but frequencies that high compete with high levels of ultrasonic quantization noise.[18] With appropriate low-pass filtering, a frequency response of 20 kHz can be achieved along with a dynamic range of nearly 120 dB, which is about the same dynamic range as PCM audio with a resolution of 20 bits.[citation needed]

Direct Stream Transfer

To reduce the space and bandwidth requirements of DSD, a lossless data compression method called Direct Stream Transfer (DST) is used. DST compression is compulsory for multi-channel regions and optional for stereo regions. It typically compresses by a factor of between two and three, allowing a disc to contain 80 minutes of both 2-channel and 5.1-channel sound.[19]

Direct Stream Transfer compression was standardized as an amendment to the MPEG-4 Audio standard, ISO/IEC 14496-3:2001/Amd 6:2005 (Lossless coding of oversampled audio), in 2005.[20][21] It contains the DSD and DST definitions as described in the Super Audio CD Specification.[22] The MPEG-4 DST provides lossless coding of oversampled audio signals. Target applications of DST are archiving and storage of 1-bit oversampled audio signals and SA-CD.[23][24][25]

A reference implementation of MPEG-4 DST was published as ISO/IEC 14496-5:2001/Amd.10:2007 in 2007.[26][27]

Copy protection

SACD has several copy protection features at the physical level, which made the digital content of SACD discs difficult to copy until the jailbreak of the PlayStation 3. The content may be copyable without SACD quality by resorting to the analog hole, or ripping the conventional 700 MB layer on hybrid discs. Copy protection schemes include physical pit modulation and 80-bit encryption of the audio data, with a key encoded on a special area of the disc that is only readable by a licensed SACD device. The HD layer of an SACD disc cannot be played back on computer CD/DVD drives, and SACDs can only be manufactured at the disc replication facilities in Shizuoka and Salzburg.[28][29] Nonetheless, a PlayStation 3 with an SACD drive and appropriate firmware can use specialized software to extract a DSD copy of the HD stream.[citation needed]

Sound quality

Sound quality parameters achievable by the Red Book CD-DA and SACD formats compared with the limits of human hearing are as follows:

CD
Dynamic range: 90 dB;[30] 120 dB (with shaped dither); [31] frequency range: 20 Hz—20 kHz[12]
SACD
Dynamic range: 105 dB;[12] frequency range: 20 Hz— 50 kHz[13]
Human hearing
Dynamic range: 120 dB;[32] frequency range: 20 Hz—20 kHz (young person); 20 Hz—8-15 kHz (middle-aged adult)[32]

In September 2007, the Audio Engineering Society published the results of a year-long trial, in which a range of subjects including professional recording engineers were asked to discern the difference between high-resolution audio sources (including SACD and DVD-Audio) and a compact disc audio (44.1 kHz/16 bit) conversion of the same source material under double-blind test conditions. Out of 554 trials, there were 276 correct answers, a 49.8% success rate corresponding almost exactly to the 50% that would have been expected by chance guessing alone.[33] When the level of the signal was elevated by 14 dB or more, the test subjects were able to detect the higher noise floor of the CD-quality loop easily. The authors commented:[34]

Now, it is very difficult to use negative results to prove the inaudibility of any given phenomenon or process. There is always the remote possibility that a different system or more finely attuned pair of ears would reveal a difference. But we have gathered enough data, using sufficiently varied and capable systems and listeners, to state that the burden of proof has now shifted. Further claims that careful 16/44.1 encoding audibly degrades high resolution signals must be supported by properly controlled double-blind tests.

Following criticism that the original published results of the study were not sufficiently detailed, the AES published a list of the audio equipment and recordings used during the tests.[35] Since the Meyer-Moran study in 2007,[36] approximately 80 studies have been published on high-resolution audio, about half of which included blind tests. Joshua Reiss performed a meta-analysis on 20 of the published tests that included sufficient experimental detail and data. In a paper published in the July 2016 issue of the AES Journal,[37] Reiss says that, although the individual tests had mixed results, and that the effect was "small and difficult to detect," the overall result was that trained listeners could distinguish between hi-resolution recordings and their CD equivalents under blind conditions: "Overall, there was a small but statistically significant ability to discriminate between standard quality audio (44.1 or 48 kHz, 16 bit) and high-resolution audio (beyond standard quality). When subjects were trained, the ability to discriminate was far more significant." Hiroshi Nittono pointed out that the results in Reiss's paper showed that the ability to distinguish high-resolution audio from CD-quality audio was "only slightly better than chance."[38]

Contradictory results have been found when comparing DSD and high-resolution PCM formats. Double-blind listening tests in 2004 between DSD and 24-bit, 176.4 kHz PCM recordings reported that among test subjects no significant differences could be heard.[39] DSD advocates and equipment manufacturers continue to assert an improvement in sound quality above PCM 24-bit 176.4 kHz.[40] A 2003 study found that despite both formats' extended frequency responses, people could not distinguish audio with information above 21 kHz from audio without such high-frequency content.[41] In a 2014 study, however, Marui et al. found that under double-blind conditions, listeners were able to distinguish between PCM (192 kHz/24 bits) and DSD (2.8 MHz) or DSD (5.6MHz) recording formats, preferring the qualitative features of DSD, but could not discriminate between the two DSD formats.[42]

Playback hardware

The Sony SCD-1 player was introduced concurrently with the SACD format in 1999, at a price of approximately US$5,000.[43] It weighed over 26 kilograms (57 lb) and played two-channel SACDs and Red Book CDs only. Electronics manufacturers, including Onkyo,[44] Denon,[45] Marantz,[46][47] Pioneer[48][49] and Yamaha[50] offer or offered SACD players. Sony has made in-car SACD players.[51]

In order to playback SACD content digitally without any conversion, some players are able to offer an output carrying encrypted streams of DSD, either via IEEE 1394[52] or more commonly, HDMI.[53]

SACD players are not permitted to offer an output carrying an unencrypted stream of DSD.[54]

The first two generations of Sony's PlayStation 3 game console were capable of reading SACD discs. Starting with the third generation (introduced October 2007), SACD playback was removed.[55] All PlayStation 3 models, however, will play DSD Disc format. The PlayStation 3 was capable of converting multi-channel DSD to lossy 1.5 Mbit/s DTS for playback over S/PDIF using the 2.00 system software. The subsequent revision removed the feature.[56]

Several brands have introduced (mostly high-end) Blu-ray Disc and Ultra HD Blu-ray players that can play SACD discs.[57]

Unofficial playback of SACD disc images on a PC is possible through freeware audio player foobar2000 for Windows using an open source plug-in extension called SACDDecoder. macOS music software Audirvana also supports playback of SACD disc images.[citation needed]

See also

 

1/16/2023

DSD Direct Stream Digital-wiki

 

Direct Stream Digital (DSD) is a trademark used by Sony and Philips for their system for digitally encoding audio signals for the Super Audio CD (SACD).

DSD uses delta-sigma modulation a form of pulse-density modulation encoding, a technique to represent audio signals in digital format, a sequence of single-bit values at a sampling rate of 2.8224 MHz. This is 64 times the CD audio sampling rate of 44.1 kHz, but with 1-bit samples instead of 16-bit samples. Noise shaping of the 64-times oversampled signal provides low quantization noise and low distortion in the audible bandwidth necessary for high resolution audio.



DSD is simply a format for storing a delta-sigma signal without applying a decimation process that converts the signal to a PCM signal.

Development

DSD technology was developed and commercialized by Sony and Philips, the designers of the audio CD. However, in 2005, Philips sold its DSD tool division to Sonic Studio.[1][better source needed]

Major label support

DVD-Audio was endorsed by the Warner Music Group, while the SACD format was endorsed by Sony and Universal Music Group, with an especially high-profile by UMG imprint Virgin Records.[2][3] Despite this, in 2011, The Warner Premium Sound series of albums was released by Warner Music Group, marking the first time the label released titles in a SACD format, with recording in DSD.[4] The series grew to ten rock and pop albums, with Super Audio CD/CD hybrid discs containing both an SACD layer and a standard CD layer.[5]

Sony did not promote SACD actively in North America, with the result that DVD-Audio gained competitive traction in the market. Elsewhere, such as in Europe or Japan, SACD gained more of a foothold.[6] Examples include the German Stockfisch Records, which releases vinyl editions of albums and DSD-recordings, released as hybrid SACDs.[7]

Independent label use

Music companies that specialize in Super Audio CD products therefore use DSD encoding. A number of independent record labels have also worked directly with Sony to focus on DSD products or the DSD recording process.

DMP Digital Music Products was an early user of the SACD digital audio format.[8] In 1997 their release Alto by Joe Beck & Ali Ryerson was the first commercial recording captured with Sony's DSD recording technology. The label's Just Jobim by Manfredo Fest in 1998 was the first project captured with the new Meitner DSD conversion technology. In 2000, DMP released the world's first multi-channel SACD—Sacred Feast by Gaudeamus.[9]

The majority of Telarc International Corporation's releases were on (generally hybrid) SACD, and are DSD recordings.[10][failed verification] Telarc often worked with early audiophile company Soundstream, and re-released many of its original Soundstream recordings in SACD format.[11] Soundstream, which made the first digital recording in the United States, recorded in 16-bit PCM at a sample rate of 50 kHz via its own proprietary digital recorder. This 50 kHz PCM format was converted to DSD for release on Telarc SACD.

The record label Mobile Fidelity had engineers who decided to adopt the SACD over the DVD-Audio disc as a favored high-resolution digital format after listening tests and technical evaluations. On the label's Hybrid SACD releases, the SACD layer is a direct DSD recording of the analog master tape, while the CD layer is a digital down conversion of the DSD, with Super Bit Mapping applied. Post-2001, CD-only releases are sourced from DSD, but omit the SACD layer.[12]

In 2007, Blue Coast Records was founded in California for the purpose of recording and releasing music recorded with the DSD format, primarily focusing on jazz and acoustic artists.[13]

On August 28, 2013, the Acoustic Sounds label launched SuperHiRez.com (now defunct), which sold mainstream albums from major record labels that were produced with Direct Stream Digital or PCM audio formats.[14][15] On September 4, 2013, Acoustic Sounds announced an agreement with Sony Music Entertainment to provide the company's new digital download service with albums that have been produced or remastered in DSD format.[16]

The format is used on albums such as Pop, Songs & Death in 2009,[17] and the remastered The Rolling Stones album Their Satanic Majesties Request in 2002.[18][19]

DSD signal format

Comparison with PCM

DSD differs from the PCM format used by compact disc or typical computer audio systems: while PCM uses a multi-bit value (representing a large range of amplitudes) at a low sample rate, DSD instead uses a single-bit value (representing an increase or decrease in amplitude) at a sample rate much higher than the signal's bandwidth.

The process of creating a DSD signal is the same as the front-end modulator and noise-shaper portion of a 1-bit delta-sigma analog-to-digital converter (ADC), without the back end decimator (which would typically convert the 1-bit bitstream into multi-bit PCM). The short-term average of the 1-bit DSD bitstream signal is proportional to the original signal amplitude. Because of the higher sample rate, an SACD player can use a one-bit DAC with a low-order analog filter to reconstruct and produce the analog output.

DSD uses noise shaping techniques to push quantization noise up to inaudible ultrasonic frequencies. Because of this, single rate DSD64 can deliver a dynamic range of 120 dB from 20 Hz to 20 kHz and an extended frequency response up to 100 kHz (most recent SACD players specify an upper limit of 80 to 90 kHz).[citation needed]

The various DSD formats use sampling rates well into the megahertz (MHz) range, typically with an oversampling ratio that is a power of two relative to the 44.1 kHz rate used for CD audio:


Name Abbreviation Sample rate Oversampling ratio relative to 44.1 kHz Notes
Single-rate DSD DSD64 2.8224 MHz 64x The format used for SACD media.
Double-rate DSD DSD128 5.6448 MHz 128x Since its establishment, content creators have made DSD128 recordings available, such as the audiophile label Opus3.[20]
Quad-rate DSD DSD256 11.2896 MHz 256x
Octuple-rate DSD DSD512 22.5792 MHz 512x
Sexdecuple-rate DSD DSD1024 45.1584 MHz 1024x

See delta-sigma modulation § Theoretical effective number of bits for analysis of the effective number of bits that can be achieved by oversampling, especially when using a higher order modulator.

DSD mixing and mastering

DSD music mixing and mastering for SACD or internet download presents challenges due to the difficulty to perform digital signal processing (DSP) operations (such as equalization, balance, panning) in a one-bit environment.

Older analog recordings were processed using analog equipment and then digitized to DSD. It is also possible to omit DSD processing by using only the available adjustments in the studio equipment while recording to DSD.

One digital processing technique is to convert the DSD to PCM and use standard PCM equipment such as Pro Tools, useful for rock and contemporary music which rely on multitrack techniques, then digitally convert back to DSD format. A format and set of tools for PCM processing of DSD has been developed under the name Digital eXtreme Definition (DXD). This is a PCM format with 24-bit resolution sampled at 352.8 kHz or alternatively 384 kHz. Some DSD proponents dislike this technique claiming that the PCM conversion to a lower sample rate reduces the sound quality of DSD.

A newer digital processing technique uses a format commonly referred to as “DSD-wide”, which retains the high sample rate of standard DSD, but uses 8-bit samples with noise shaping. DSD-wide is sometimes disparagingly referred to as “PCM-narrow”. It has the benefit of making DSP operations practical while retaining the 2.8224 MHz sampling frequency. The processed DSD-wide signal is converted to the final 1-bit DSD product at the same sample rate. There are now a few digital audio workstations (DAWs) that can operate in the DSD-wide domain, notably Pyramix and some SADiE systems. Processing DSD-wide at the higher multiple-DSD sample rates is also possible.

DSD processing tools

DXD was initially developed for the Merging Technologies Pyramix workstation and introduced together with their Sphynx 2, AD/DA converter in 2004. This combination meant that it was possible to record and edit directly in DXD,[21] and that the sample only converts to DSD once before publishing. This offers an advantage to the user as the noise created by converting DSD rises dramatically above 20 kHz, and more noise is added each time a signal is converted back to DSD during editing.

DSD128, 5.6448 MHz, has been supported by multiple hardware devices such as the exaSound e20 Mk II DAC.[22] The Korg MR-1000 1-bit digital recorder samples at 5.6448 MHz, twice the SACD rate.

The Pyramix Virtual Studio Digital Audio Workstation allows for recording, editing and mastering all DSD formats up to DSD256. A 48 kHz variant of 12.288 MHz has been established. The exaSound e20 DAC was the first commercially available device capable of DSD256 playback at sampling rates of 11.2896/12.288 MHz.[23][24] The Merging Technologies Horus AD/DA Converter offers sample rates up to 11.2 MHz, or four times the SACD rate.

Other hardware and software are capable of multi-DSD processing. Hardware includes the Amanero Combo384 DSD output adapter, and exaU2I USB to I²S interface, and software such as JRiver Media Center, foobar2000 with SACD plugin (up to DSD256 only), Roon,[25] HQPlayer and Neutron Music Player are all able to handle DSD files of up to DSD512 rate fully natively.

DSD playback options

Sony developed DSD for SACD, and many disk players support SACD. Since the format is digital, there are other ways to play back a DSD stream; the development of these alternatives has enabled companies to offer high-quality music downloads in DSD.[26]

DSD disc format

Some professional audio recorders (from Korg, Tascam, and others) can record in DSD format. Transferring this signal to a recordable DVD with the appropriate tools, such as the AudioGate software bundled with Korg MR-1/2/1000/2000 recorders, renders a DSD Disc. Such discs can be played back in native DSD only on certain Sony VAIO laptops and PlayStation 3 systems.[27] HQPlayer from February 16, 2011, version 2.6.0 beta includes support for direct/native playback from DSD Interchange File Format (DSDIFF) and DSD stream files (DSF) to ASIO devices with DSD support. Moreover, Sony produces two SACD players, the SCD-XA5400ES and the SCD-XE800, that fully support the DSD-disc format. Only the DSF format is supported. However, since most personal computers have only PCM audio hardware, DSD discs must be transcoded to PCM on the fly with the proper software plug-ins with questionable quality benefits compared to native high resolution PCM sources like DVD or Blu-ray Disc Audio.

In June 2012, Pioneer launched a series of SACD players compatible with DSD-disc. The PD-30 and PD-50.

In January 2013, TEAC announced a DSD-disc compatible player, the PD-501HR.[28]

DSD over USB

An alternative to burning DSD files onto disks for eventual playback is to transfer the (non-encrypted) files from a computer to audio hardware over a digital link such as USB.

The USB audio 2.0 specification defined several formats for the more common PCM approach to digital audio, but did not define a format for DSD.

In 2012, representatives from many companies and others developed a standard to represent and detect DSD audio within PCM frames; the standard, commonly known as "DSD over PCM", or "DoP", is suitable for other digital links that use PCM.[29] The 1.1 revision added protocol support for higher DSD sample rates without requiring an increase the underlying PCM sample rate. Many manufacturers now offer DACs that support DoP.

DSD compatible hardware

"Native DSD" playback definition is somewhat a matter of philosophy. Generally speaking, it avoids the conversion of DSD data into multibit PCM at anywhere along the decoding/reproduction chain, as is common in digital volume control.[citation needed]

Many commercially available DACs now support 'native DSD', featuring off-the-shelf chips from ESS, AKM, Cirrus Logic, or Burr Brown.

Due to the minimalist appeal of 1-bit DSD, and its theoretical simplicity in decoding, there are also commercially available and DIY DACs that specialize in DSD decoding, avoiding the use of off-the-shelf DAC chips. These include RT Audio Design's Pure DSD Converter, and the STAR Pure DSD DAC.

Finally, Ed Meitner and Andreas Koch, who have historical ties with the development of DSD and SACD, have companies that produce DACs. Ed Meitner has affiliation with EMM Labs and Meitner Audio. Andreas Koch is affiliated with Playback Designs.

DSD vs. PCM

There has been much controversy between proponents of DSD and PCM over which encoding system is superior. In 2000, Lipshitz and Vanderkooy stated that one-bit converters, as employed by DSD, are unsuitable for high-end applications due to their high distortion.[30][31] In 2002, Philips published a paper arguing the contrary.[32] Lipshitz and Vanderkooy's paper was further criticized by Angus.[33] Lipshitz and Vanderkooy[34] responded to the criticisms.[35] Stuart also defined sigma-delta modulation a "totally unsuitable choice" for high resolution digital audio.[36]

Conventional implementation of DSD has an intrinsic high distortion.[37] Distortion can be alleviated to some degree by using multibit DACs. State-of-the-art ADCs are based around sigma-delta modulation designs. Oversampling converters are usually used in linear PCM formats, where the ADC or DAC output is subject to bandlimiting and dithering.[38] Most modern ADC and DAC converters use oversampling and a multi-bit design; in other words, while DSD is a 1-bit format, modern converters internally use a 2-bit[39] to 6-bit[40] format.

Comparisons of DSD and PCM recordings with the same origin, number of channels and similar bandwidth and noise have yielded contradictory results. A 2004 study conducted at the Erich-Thienhaus Institute in Detmold, Germany found that in double-blind tests "hardly any of the subjects could make a reproducible distinction between the two encoding systems."[41] In contrast, a 2014 study conducted at the Tokyo University of the Arts found that listeners could distinguish PCM (192 kHz/24 bits) from either DSD (2.8 MHz) or DSD (5.6 MHz) (but not between the two DSD samplings), preferring the sound of DSD over PCM: "For example, Drums stimulus of DSD (5.6 MHz) has p = 0.001 when compared against PCM (192 kHz/24 bit) in overall preference. This suggests that DSD version was statistically significantly preferred over the PCM version."[42] These findings are questionable however, because "the two formats were subject to different processing, most notably, different filtering of the low frequency content."[43]

DSD met with relatively little success in the consumer market, even though the SACD was actually more successful than its direct competitor, the PCM-based DVD-Audio. Direct manipulation of recorded DSD data is difficult due to the limited availability of appropriate software. The advent of new high-resolution PCM standards, such as DXD, further restricted its market niche. DSD, however, is still used as an archival format for studio applications and is seen[by whom?] as a possible replacement for analog tapes.

DSD file formats

There are several alternative ways to store DSD encoded audio as files on a computer. One option is to use DSD native file formats that have been specifically for this purpose. Alternatively, DSD can be stored in general purpose audio formats that have been officially adapted to support DSD storage. Finally, DSD audio can be embedded into PCM audio streams that do not have special DSD support. However, a special decoder is needed to recover the DSD stream afterwards.

DSD Interchange File Format

DSD Interchange File Format
Filename extension
.dff
Internet media type
audio/x-dff
Developed byPhilips
Latest release
1.5
2004-27-04
Type of formatDSD Audio
Websitesonicstudio.com/pdf/dsd/DSDIFF_1.5_Spec.pdf

DSD Interchange File Format (DSDIFF) is a native DSD file format developed by Philips between years 2000 and 2004 for storage of DSD recordings.[44] The format supports DST compression of the payload as well as annotations used in Super Audio CD production. A single DSDIFF file may store an entire album as a single audio stream together with markers indicating where to cut the individual tracks for the album. Some parts of the audio content may be left out entirely from the resulting SACD. The embedded metadata format is intended for mastering engineers and not consumers. For example, markers indicating beginning of a new audio track have a text field for storing arbitrary text based information. However, there is no requirement for the text to contain the title of the track. A defacto standard for including ID3 metadata in an unofficial ID3 chunk has later formed as consumers have adopted the format for storing individual tracks of DSD audio. Files containing DSDIFF data would typically use the .dff file suffix. No official media type has been registered for the DSDIFF file format.[45] Freedesktop.org uses the unofficial media types audio/x-dff.[46]

Wideband Single-bit Data

Wideband Single-bit Data
Filename extension
.wsd
Developed by1-bit Audio Consortium
Type of formatDSD Audio

Wideband Single-bit Data (WSD) is a native DSD file format developed by 1-bit Audio Consortium in 2002.[47] The consortium was established by Waseda University, Sharp and Pioneer a year earlier.[48] In 2012 the consortium published an updated 1.1 version of the specification.[49] The WSD header has a field for storing an absolute timestamp in samples since midnight. The timestamp makes it possible to accurately know how much time passed between two recordings made consecutively on the same physical recording device. Korg portable recorders MR-1, MR-2, MR-1000 and MR-2000s support WSD alongside other DSD based formats.[50][51][52]

DSD Stream File

DSD Stream File
Filename extension
.dsf
Internet media type
audio/x-dsf
Developed bySony
Latest release
1.01
November 2005
Type of formatDSD Audio
Websitedsd-guide.com/sonys-dsf-file-format-spec

DSD Stream File (DSF) is a native DSD file format developed by Sony around year 2005.[53][54] The format is intended for storing individual tracks of DSD audio and has native support for ID3 metadata inclusion. The format defines a "format ID" field that could presumably be used to indicate DST compression. However, the only identifier defined in the spec is number 0 indicating "DSD raw". Files containing DSF data would typically use the.dsf file suffix. No official media type has been registered for the DSF file format.[55] Freedesktop.org uses the unofficial media types audio/x-dsf.[46]

DSD compatible file formats

DSD compatible file formats support storing DSD encoded audio in addition to audio encoded as PCM.

WavPack is a generic audio storage format supporting various different forms of audio.[56] Compressed DSD audio is also supported by the format.[57] The DSD support was initially introduced with the release of WavPack software suite version 5 in December 2016.[58] Files containing WavPack data would typically use the.wv file suffix. No official media type has been registered for the WavPack file format.[59] Freedesktop.org uses the unofficial media types audio/x-wavpack.[60] Since WavPack supports multiple formats the suffix or mime type alone do not indicate the presence of DSD audio.

DSD over PCM (DoP)

In addition to actual DSD file formats, a format called DSD Audio over PCM Frames (DoP) is used for embedding DSD into PCM audio streams.[61] DoP makes it possible to circumvent any PCM-only component preventing DSD capable DAC from receiving the raw DSD data required for native DSD playback. While DoP is intended to be a wire protocol used for communication between music player application and a DAC, there exists tools that can embed DoP encoded DSD into FLAC files enabling user to use a non-DSD capable player for DSD playback with their DoP capable DAC.[62] A DoP stream is designed to sound like low volume noise when played back by a PCM-only DAC, while a DoP capable DAC will detect the presence of DSD data, extract it from the PCM and play it back as DSD.

See also